Preliminary Estimate of Cost Savings in NPCC System With Wind Generation

Noha Abdel-Karim nabdelga@andrew.cmu.edu and Marija Ilić, milic@andrew.cmu.edu

Motivation

- > Asses the potential generation cost savings in existing power grid
- Projection on Wind plant expansion by means of cost benefit analysis
- > Cost / Benefit analysis: Investment decisions by utilities and the Market

The Main Idea

- Given wind power forecast and the forecasted load profiles; Perform Economic Dispatch (ED) to minimize total system generation cost
- >The effect of increasing wind capacity in ED and total system savings
- > Cost benefit estimates for building a plant
- > Breakeven wind plant size for optimal future grid expansion

Approach

- **3** The problem of minimizing total generation cost is posed as a basic Economic Dispatch optimization problem as follows:
 - \blacktriangleright Given a total system load P_{L} and the available power plants P_{Gi} (already ON), where:

$$PG_{iMIN} \leq PG_i \leq PG_{iMAX}$$

Given an approximated linear cost function

 $C_i(PG_i) = A_i PG_i + B_i$

>Decide how much to schedule PG' s So that:

$$\underset{PG_i}{MIN} \sum_{t=1}^{t=4380} \sum_{i=1}^{NG} C_i(PG_i) \quad so \ that \quad \sum_i^{NG} PG_i = P_i$$

➢Note that in ED, results are obtained by assuming wind power is

available at the time period being simulated.

2

Acknowledgment: This work is funded by US Dept. of Energy

Source: Eric. Allen, Jeffrey H. Lang, Marija Ilić," A combined Equivalenced-Electric, Economic & Market representation of the Northeastern Power Coordination Council US Electrical power system

Cost Savings

	% Wind Energy	1.60%	5%	10%	15%			
	Generation cost (\$)	\$6,918,295	\$6,588,648	\$6,259,069	\$5,929,456			
	Cost savings (\$)	\$0.00	\$329,647	\$659,226	\$988,839			

NPCC US Bulk Power System: The effect of 5%, 10% and 15% wind power increase

— Potential Decisions —

% Wind	1.60%	5%	10%	15%	
Wind Capacity MW	2346	7331.25	14662.5	21993.7	
Fixed Avg. Capital Cost=ACC	\$17,595.0	\$54,984.4	\$109,969	\$164,953	
Wind Gen. Cost	\$23,460.0	\$73,312.5	\$146,625	\$219,937	
Total cost	\$41,055.0	\$128,297	\$256,594	\$384,891	
Rev	\$93,840.0	\$293,250	\$586,500	\$879,750	
Break even MW cover VC	586.50	1,832.81	3,665.63	5,498.44	
Break even MW cover TC	1,026.38	3,207.42	6,414.84	9,622.27	

electric energy systems grou

 Short term wind forecasting and ED with transmission congestion

Frequency control and AGC with wind

Carnegie Mellon Electricity Industry Center